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Abstract

The connection between robust statistical procedures and nonsmooth optimization is
established. Based on the resulting family of optimization problems, robust learning prob-
lem formulations with regularization-based control on the model complexity of the MLP-
network are described and analyzed. Numerical experiments for simulated regression prob-
lems are conducted and new strategies for determining the regularization coefficient are
proposed and evaluated.

1 Introduction

A multilayered perceptron (MLP) is the most commonly used neural network for nonlinear

regression approximation. The simplest model of data in regression is to assume that the given

targets are generated by

yi = φ(xi) + εi, (1.1)

where φ(x) is the unknown stationary function and εi’s are sampled from an underlying noise

process. In [Kärkkäinen, 2002] it was proved that for a special architecture and regularization

(pruning) of MLP the usual least-mean-squares learning problem formulation corresponds to the

Gaussian assumption for the noise statistics. In statistics, relaxation of this assumption underlies

the so-called robust procedures (e.g., [Huber, 1981, Rousseeuw and Leroy, 1987, Rao, 1988,

Hettmansperger and McKean, 1998, Oja, 1999]).

In neural networks literature there have been some attempts to combine robust statistical pro-

cedures with learning problem formulations and training algorithms mainly for MLP-networks

(e.g., [Kosko, 1992, Chen and Jain, 1994, Liano, 1996]). However, thorough understanding of

such combinations together with a link to model complexity through regularization based prun-

ing has, as far as we know, not been considered on a solid basis. This is the goal of the present

work.
∗This work was financially supported by the Academy of Finland, grant 49006, and by the InBCT-project of

Tekes.
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The main emphasis here is to describe, analyze, and test robust learning problem formula-

tions for the MLP in a batch mode. For the numerical comparisons, we need to utilize black

box training algorithms for solving the optimization problems which are based on these formu-

lations. A key concept then is the convergence of an algorithm which depends on the regularity

of the optimization problem [Nocedal and Wright, 1999]. Hence, rigorous treatment of robust

MLP requires us to establish a link between the norms behind the robust statistics and the reg-

ularity of such problems [Clarke, 1983, Mäkelä and Neittaanmäki, 1992]. As far as we know

this fundamental relation has not been explicitly established in other works.

Another basis for the present work is to treat the MLP-transformation in a layer-wise form

([Hagan and Menhaj, 1994, Kärkkäinen, 2002]). This allows us to derive the optimality system

in a compact form, which can be utilized in an efficient computer implementation of the pro-

posed techniques. Clear and explicit form of the optimality conditions enable the derivation

of some consequences and interpretations concerning the final structure of a trained network,

which readily explain and predict the behaviour of MLP. Together with the given new heuristics

for controlling the model complexity the proposed approach allows a rigorous derivation of an

MLP for real applications with different noise characteristics within the training data.

The contents of the work are the following: First, in Section 2 we establish, discuss and

illustrate the connection between robust statistics and nonsmooth optimization. There, we also

present the layer-wise architecture and family of learning problem formulations for training an

MLP. In Section 3, we compute the optimality conditions for the network learning and derive

and discuss some of their consequences. In Section 4, we report results of numerical experi-

ments for comparing different formulations and introduce two novel techniques for determining

the complexity of an MLP model. Finally, in Section 5 we briefly make some conclusions.

2 Preliminaries

Throughout the paper, we denote by (v)i the ith component of a vector v ∈
� n . Without

parenthesis, vi represents one element in the set of vectors {vi}. The lq-norm of a vector v is

given by

‖v‖q =

(
n∑

i=1

|(v)i|
q

)1/q

, q < ∞. (2.1)

2.1 Nonsmooth optimization and robust statistics

In this section, we establish the connection between nonsmooth optimization and robust statis-

tics. More details and further references on nonsmooth optimization can be found, e.g., in

[Clarke, 1983, Mäkelä and Neittaanmäki, 1992], while robust statistics is treated in [Huber, 1981,

Rousseeuw and Leroy, 1987, Rao, 1988, Hettmansperger and McKean, 1998, Oja, 1999].
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Nonsmooth optimization is a field of mathematics concentrating on functionals and opti-

mization problems, which can not be described by using the classical (C 1) differential calculus.

We consider the following unconstrained optimization problem

min
u∈� n

J (u), (2.2)

where J :
� n →

�
is a given cost function.

Definition 2.1. A function J :
� n →

�
is locally Lipschitz continuous at u∗ ∈

� n , if there

exist K > 0 and δ > 0 such that

|J (u) − J (v)| ≤ K ‖u − v‖2 for all u,v ∈ B(u∗, δ), (2.3)

where B(u, δ) = {v ∈
� n : ‖v − u‖2 < δ}.

Definition 2.2. Let J be locally Lipschitz continuous. The subdifferential ∂J (according to

[Clarke, 1983]) of J at u ∈
� n is defined by

∂J (u) = {ξ ∈
� n | J 0(u;d) ≥ ξTd ∀d ∈

� n}, (2.4)

where J 0(u;d) is the generalized directional derivative

J 0(u;d) = lim sup
v→u

t↘0

J (v + td)

t
, (2.5)

which coincides with the usual directional derivative J
′

(u;d) when it exists. An equivalent

characterization of the nonempty, convex, and compact set ∂J (u) is given by

∂J (u) = conv{ξ ∈
� n | ∀{ui} ⊂

� n such that ui → u

and ∃∇J (ui),∇J (ui) → ξ},
(2.6)

where the convex hull of set S, conv(S), is the smallest convex set containing the set S. Element

ξ ∈ ∂J (u) is called a subgradient.

Definition 2.3. Let J be locally Lipschitz continuous. Point u∗ ∈
� n is called a substationary

point of the minimization problem (2.2) if

0 ∈ ∂J (u∗). (2.7)

Theorem 2.1. Let J be locally Lipschitz continuous. Every local minimizer u∗ ∈
� n for

problem (2.2) is substationary.

Theorem 2.2. If J is convex, then the necessary optimality condition in Theorem 2.1 is also

sufficient.
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To summarize, in nonsmooth optimization a generalization of the directional derivative is

the set-valued subdifferential and, correspondingly, a generalization of the smooth, local indi-

cation of an extremum point ∇J (u∗) = 0 is the existence of a substationary point 0 ∈ ∂J (u∗).

Let us illustrate the above definitions with an example f(u) = |u| for u ∈
�
. The subdiffer-

ential of f(u) is given by

∂f(u) = sign(u) =





−1, for u < 0,

[−1, 1], for u = 0,

1, for u > 0.

(2.8)

As can be seen, the subdifferential (i.e., generalized sign-function) coincides with the usual

derivative in the well-defined case u 6= 0, and contains the whole set [−1, 1] with endpoints

of left/right converging directional derivatives of the sequence f
′

(ui) for ui → 0 according to

(2.6). Moreover, u∗ = 0 is the unique minimizer of |u|, because 0 ∈ ∂f(u) only for u∗ = 0.

Next we turn our attention to robust statistics. Let {x1, . . . ,xN} be a sample of a multivari-

ate random variable x ∈
� n . Consider the following family of optimization problems

min
u∈ � n

J α
q (u), for J α

q (u) =
1

α

N∑

i=1

‖u − xi‖
α
q . (2.9)

We restrict ourselves to the following combinations (cf. [Rao, 1988]): q = α = 2, q = α = 1,

and q = 2α = 2.

q = α = 2 : average

In this case, problem (2.9) is the quadratic least-squares problem, and the gradient of J α
q is

given by

∇J 2
2 (u) =

N∑

i=1

(u − xi).

By enforcing the gradient to be zero, we recover the unique solution a = u∗ of (2.9) in the form

a =
1

N

N∑

i=1

xi,

which is the marginal mean (average) for the given sample.

q = α = 1 : median

This choice leads to the minimization of the sum of l1-norms, which is a nonsmooth optimiza-

tion problem. The subdifferential of J 1
1 (u) reads as

∂J 1
1 (u) =

N∑

i=1

ξi, where (ξi)j = sign((u − xi)j). (2.10)
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Next, we interpret the substationarity condition 0 ∈ ∂J 1
1 (u). We distinguish between the two

cases of odd and even N, and by sort(A) we mean that the elements of A are sorted in ascending

order.

For N odd, the solution u
∗

of (2.9) is realized by the unique vector m of marginal middle

values, i.e. median, given by

(m)j = sort ({(xi)j})(N+1)/2 ∀1 ≤ j ≤ n. (2.11)

This can be verified by first assuming that u
∗

6= m, which implies that (u
∗

)j 6= (m)j for some

j. Then,
∑

i sign((u
∗

− xi)j) can not be zero, and thus 0 /∈ ∂J (u
∗

). On the other hand, if

u
∗

= m, we see immediately that 0 ∈ ∂J (u
∗

). To conclude, we have for N odd

0 ∈ ∂J (u
∗

) ⇐⇒ u
∗

= m, (2.12)

where u
∗

is the unique minimizer of J 1
1 . This result also shows that for each feature {(xi)j}

there is a prototype (m)j among the set of samples.

If N is even, exactly the same reasoning as above yields

0 ∈ ∂J (u
∗

) ⇐⇒ (u
∗

)j ∈ [sort({(xi)j})N/2, sort({(xi)j})N/2+1] (2.13)

for all j, which means that the minimizer of J 1
1 (u) is given by the whole interval between the

two middle values in the ordering according to the jth component of the sample data. Especially,

u
∗

(median) is not unique in this case, and for each feature there are two prototypes (endpoints

in (2.13)) among the set of samples.

q = 2α = 2 : spatial median

The gradient of the convex function f(u) = ‖u‖2 is well-defined and unique for all u 6= 0. By

the definition f 0(0,d) = f
′

(0,d) = ‖d‖2, so that, according to (2.4), ξ ∈ ∂f(0) iff ξTd ≤

‖d‖2 for all d ∈
� n . Hence, by choosing d = ξ it follows that ‖ξ‖2 ≤ 1, and, on the other

hand, if ‖ξ‖2 ≤ 1, then ξTd ≤ ‖d‖2. This shows that the subgradient ξ of f(u) at zero is

characterized by the condition ‖ξ‖2 ≤ 1. This readily yields

∂J 1
2 (u) =

N∑

i=1

ξi, with





(ξi)j =
(u − xi)j

‖u − xi‖2
, for ‖u − xi‖2 6= 0,

‖ξi‖2 ≤ 1, for ‖u − xi‖2 = 0.
(2.14)

Thus, in the present case solution of (2.9) is realized by the so-called spatial median s, which

satisfies (2.14).

Comparison of different estimators

In statistical context robustness refers to the insensitivity of estimators towards outliers, i.e. ob-

servations which do not follow the characteristic distribution of the rest of the data. Sensitivity
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Figure 1: Scaled (scale 0.4) gradient fields of ‖x‖2
2 (left) and ‖x‖2 (right).
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Figure 2: Scaled (scale 0.4) gradient field of f(x) = ‖x‖1.

of the average a towards observations lying far from the origin (representing the mean-valued

estimator) is illustrated in Figure 1 (left), where the gradient field ∇f(x) = (x1,x2) of 2d func-

tion ‖x‖2
2 is given. As we can see, the size of the gradient vector increases when moving away

from the origin, so that those points are weighted more heavily at the equilibrium ∇‖x‖2
2 = 0.

This readily explains why the (symmetric) Gaussian distribution with enough samples is the

intrinsic assumption behind the least-squares estimate a. On the other hand, an estimator with

equal weight of all samples is obtained by dividing the gradient by its length, and then we pre-

cisely get the spatial median s, which is illustrated through the gradient field of function ‖x‖2 in

Figure 1 (right). As stated, e.g., in [Hettmansperger and McKean, 1998] the corresponding esti-

mating function J 1
2 depends on the data only through the directions and not on the magnitudes

of u− xi, i = 1, . . . , N, which significantly decreases both the sensitivity towards outliers and
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requirements concerning the necessary amount of data. Finally, in Figure 2 the gradient field of

a function ‖x‖1 is depicted, where the insensitivity with respect to the distance but also the lack

of rotational invariance (due to different contour lines of the unit ball in the 1-norm) are clearly

visible.
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Figure 3: Left: Bivariate example of a uniform sample with two outliers illustrating the average
a, median m, and spatial median s. Right: Same plot for the 45 degrees rotated data including
the original median m0 and its rotation path showing the lack of rotational invariance.

We further illustrate the behaviour of the three estimators a, m, and s in Figure 3 with a

sample data. This example also depicts both the sensitivity of a towards outliers and lack of

rotational invariance of m.

2.2 MLP in a layer-wise form

A compact description for the action of the multilayered perceptron neural network is given by

([Hagan and Menhaj, 1994, Kärkkäinen, 2002])

o0 = x, ol = F l(Wlô(l−1)) for l = 1, . . . , L. (2.15)

Here the superscript l corresponds to the layer number (starting from zero for the input) and

by the circumflex we indicate the normal extension of a vector by unity. F l(·) denotes the

usual componentwise activation on the lth level, which can be represented by using a diago-

nal function-matrix F = F(·) = Diag{fi(·)}
m
i=1 supplied with the natural definition of the

matrix-vector product y = F(v) ≡ (y)i = fi((v)i). Notice though that the following anal-

ysis generalizes straightforwardly to the case of an activation with nondiagonal function ma-

trix [Kärkkäinen, 2002]. The dimensions of the weight-matrices are given by dim(Wl) =

nl × (nl−1 + 1), l = 1, . . . , L, where n0 is the length of an input-vector x, nL the length of
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the output-vector oL, and nl, 0 < l < L, determine the sizes (number of neurons) of the hid-

den layers. Due to the special bias weights in the first column, the column numbering for each

weight-matrix starts from zero.

Instead of precisely (2.15) we consider an architecture of MLP containing only a linear

transformation in the final layer as oL
i = N ({Wl})(xi) = WLô

(L−1)
i . With a given training

data {xi,yi}
N
i=1 , xi ∈

� n0 and yi ∈
� nL , the unknown weight matrices {Wl}L

l=1 are deter-

mined as a solution of the optimization problem

min
{Wl}L

l=1

Lα
q,β({Wl}), (2.16)

where the cost functional is of the general form

Lα
q,β({W

l}) =
1

αN

N∑

i=1

∥∥N ({Wl})(xi) − yi

∥∥α

q
+

β

2

L∑

l=1

∑

(i,j)∈Il

|Wl
i,j|

2. (2.17)

Here, the index sets Il are defined as follows:

Il =

{
{(i, j) : 1 ≤ i ≤ nl, 0 ≤ j ≤ nl−1} , l < L,

{(i, j) : 1 ≤ i ≤ nl, 1 ≤ j ≤ nl−1} , l = L,
(2.18)

which means that the weight decay term in (2.17) contains all other components of the unknown

weight matrices except the final bias in WL as suggested by the test results in [Kärkkäinen, 2002].

All features in the training data {xi,yi} are preprocessed to the range [−1, 1] of the k-tanh

functions

tk(a) =
2

1 + exp(−2 k a)
− 1 for k ∈

�
, (2.19)

which are used in the activation. In this way, we balance the scaling of unknowns (components

of weight matrices at different layers) in problem (2.16) [Kärkkäinen, 2002].

In cost function (2.17), we control the generality (model complexity) of a trained network

using only a single hyperparameter, the weight decay coefficient β ≥ 0, which restricts the

universality of the network by forcing the unknowns towards the neighborhood of zero, i.e.

around the linear region of the activation functions in (2.19). Function (2.17) is also related

to Bayesian statistics with compatible choices of the sample data and prior distributions (e.g.,

[Rögnvaldsson, 1998]). Moreover, we consider the same three combinations for the parameters

q and α as in the previous section, namely q = α = 2, q = α = 1, and q = 2α = 2. Hence, we

conclude that the considered family of learning problem formulations for the MLP results from

a compound application of robust and Bayesian statistics.

For solving the problems (2.16) we use efficient generalizations of gradient-based meth-

ods for nonsmooth problems known as bundle methods [Mäkelä and Neittaanmäki, 1992]. We

recall from [Kärkkäinen, 2002] that for α = 1 the assumptions for convergence of gradient-

descent (on batch-mode Lipschitz continuity of gradient, for on-line stochastic iteration C 2
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continuity), CG (Lipschitz continuity of gradient), and especially quasi-Newton methods (C 2-

continuity) are violated [Haykin, 1994, Nocedal and Wright, 1999]. As documented, e.g., for

MLP by [Saito and Nakano, 2000] and for image restoration by [Kärkkäinen et al., 2001] this

yields nonconvergence of ordinary training algorithms, when the cost function does not fulfill

the required smoothness assumptions. Furthermore, results in [Kärkkäinen et al., 2001] indicate

that simple smoothing techniques, such as replacing a norm ‖v‖2 for v ∈
� 2 by

√
v2

1 + v2
2 + ε

for ε > 0, are not sufficient to restore the convergence of ordinary optimization methods.

3 Sensitivity Analysis and its Consequences

Next we apply a useful technique, also presented in [Kärkkäinen, 2002], to derive the optimality

conditions for the network training problem (2.16). From now on, for any vector v ∈
� n , the

notation sign[v] means a componentwise application of the sign-function and the abbreviated

notation ξ = v/‖v‖2 actually refers to

(ξ)i =
(v)i

‖v‖2
, for ‖v‖2 6= 0, ‖ξ‖2 ≤ 1, for ‖v‖2 = 0. (3.1)

For simplicity, we assume that the activation functions in all function-matrices F(·) are dif-

ferentiable, although the analysis below can be extended and given algorithms applied also to

nondifferentiable activation functions. Let us further emphasize that the use of nonsmooth acti-

vation functions (step-function or a/(1+|a|), e.g., [Prechelt, 1998]) makes the learning problem

nonsmooth even for q = α = 2, and therefore ordinary gradient-based optimization algorithms

can not be used for solving.

3.1 MLP with One Hidden Layer

For clarity, we start with MLP with only one hidden layer. Then, any local solution (W1∗,W2∗)

of the minimization problem (2.16) is characterized by the conditions
[
O

O

]
∈ ∂(W1,W2) L

α
q,β(W

1∗,W2∗) =

[
∂W1 Lα

q,β(W1∗,W2∗)
∂W2 Lα

q,β(W1∗,W2∗)

]
. (3.2)

Here, ∂Wl Lα
q,β, l = 1, 2, are subdifferentials presented in a similar matrix-form as the unknown

weight-matrices.

We begin the derivation with some lemmata. The proofs are omitted here, because they

follow exactly the same lines as the proofs of the corresponding lemmata in [Kärkkäinen, 2002],

using the already introduced results on subdifferential calculus in Section 2.1.

Lemma 3.1. Let v ∈
� m1 and y ∈

� m2 be given vectors. The subgradient-matrix ∂W J(W), W ∈
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� m2×m1 , for the functional J(W) = 1
α
‖Wv − y‖α

q is of the form

∂W J(W) = ξ vT , where ξ =





[Wv − y], for q = α = 2,

sign[Wv − y], for q = α = 1,
Wv − y

‖Wv − y‖2

, for q = 2α = 2.

Lemma 3.2. Let W ∈
� m2×m1 be a given matrix, y ∈

� m2 a given vector, and F = Diag{fi(·)}
m1

i=1

a given diagonal function-matrix. The subgradient-vector ∂uJ(u), u ∈
� m1 , for the functional

J(u) = 1
α
‖WF(u) − y‖α

q reads as

∂uJ(u) =
(
WF

′

(u)
)T

ξ = Diag{F
′

(u)}WTξ,

where

ξ =





[WF(u) − y], for q = α = 2,

sign[WF(u) − y], for q = α = 1,
WF(u) − y

‖WF(u) − y‖2
, for q = 2α = 2.

Lemma 3.3. Let W̄ ∈
� m2×m1 be a given matrix, F = Diag{fi(·)}

m1

i=1 a given diagonal

function-matrix, and v ∈
� m0 , y ∈

� m2 given vectors. The subgradient-matrix ∂W J(W), W ∈
� m1×m0 , for the functional

J(W) =
1

α
‖W̄F(Wv) − y‖α

q

is of the form ∂W J(W) = Diag{F
′

(Wv)}W̄T ξ vT , where

ξ =





[W̄F(Wv) − y], for q = α = 2,

sign[W̄F(Wv) − y], for q = α = 1,

W̄F(Wv) − y

‖W̄F(Wv) − y‖2

, for q = 2α = 2.

Now we are ready to state the actual results for the perceptron with one hidden layer. In

what follows, we denote by W2
1 the submatrix (W2)i,j , i = 1, . . . , n2, j = 1, . . . , n1, which is

obtained from W2 by removing the first column W2
0 containing the bias nodes. Furthermore,

the error in the ith output is denoted by ei = W2 F̂(W1 x̂i) − yi.

Theorem 3.1. Subgradient-matrices ∂W2 Lα
q,β(W

1, W2) ⊂
� n2×(n1+1) and

∂W1 Lα
q,β(W1, W2) ⊂

� n1×(n0+1) are of the form

∂W2 Lα
q,β(W

1,W2) =
1

N

N∑

i=1

ξi [F̂(W1 x̂i)]
T + β [0 W2

1], (3.3)

∂W1 Lα
q,β(W

1,W2) =
1

N

N∑

i=1

Diag{F
′

(W1 x̂i)} (W2
1)

T ξi x̂
T
i + β W1, (3.4)
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where

ξi =





ei, for q = α = 2,

sign[ei], for q = α = 1,
ei

‖ei‖2

, for q = 2α = 2.

3.2 MLP with Several Hidden Layers

Next, we generalize the previous analysis to the case of several hidden layers.

Lemma 3.4. Let W̃ ∈
� m3×m2 and W̄ ∈

� m2×m1 be given matrices, F̃ = Diag{f̃i(·)}
m2

i=1 and

F̄ = Diag{f̄i(·)}
m1

i=1 given diagonal function-matrices, and v ∈
� m0 , y ∈

� m3 given vectors.

The subgradient-matrix ∂W J(W), W ∈
� m1×m0 , for the functional

J(W) =
1

α
‖W̄ F̄(W̃ F̃(Wv)) − y‖α

q

is of the form

∂W J(W) = Diag{F̃
′

(Wv)}W̃T Diag{F̄
′

(W̃ F̃(Wv))}W̄Tξ vT ,

where

ξ =





[W̄ F̄(W̃ F̃(Wv)) − y], for q = α = 2,

sign[W̄ F̄(W̃ F̃(Wv)) − y], for q = α = 1,

W̄ F̄(W̃ F̃(Wv)) − y

‖W̄ F̄(W̃ F̃(Wv)) − y‖2

, for q = 2α = 2.

Theorem 3.2. Subgradient-matrices ∂Wl Lα
q,β({Wl}), l = L, . . . , 1, read as

∂Wl Lα
q ({Wl}) =

1

N

N∑

i=1

ξl
i [ô

(l−1)
i ]T + β W̃l,

where

ξL
i =





ei, for q = α = 2,

sign[ei], for q = α = 1,
ei

‖ei‖2
for q = 2α = 2,

(3.5)

ξl
i = Diag{(F l)

′

(Wl ô
(l−1)
i )} (W

(l+1)
1 )T ξ

(l+1)
i . (3.6)

Furthermore, W̃l = [0 WL
1 ] for l = L, and coincides with the whole matrix Wl for 1 ≤ l < L.

The compact presentation of the optimality system in Theorem 3.2 can be readily exploited

in the implementation, which practically consists of a few basic linear-algebraic operations.

Moreover, the following result concerning every local minimizer O ∈ ∂Wl Lα
q,β({W

l∗}) of

problem (2.16) holds.
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Corollary 3.1. For locally optimal MLP-network {Wl∗} satisfying the conditions in Theorem

3.2: 



1

N

N∑

i=1

e∗
i = 0, for q = α = 2,

0 ∈
N∑

i=1

sign[e∗
i ], for q = α = 1,

0 ∈
N∑

i=1

e∗
i

‖e∗
i ‖2

, for q = 2α = 2,

for all β ≥ 0.

Proof. The optimality condition

O ∈ ∂WL Lα
q,β({Wl∗}) =

1

N

N∑

i=1

ξL∗

i [ô
(L−1)
i ]T + β [0 WL∗

1 ]

(with the abbreviation ô
(L−1)
i = ô

(L−1)∗

i ) in Theorem 3.2 can be written in the non-extended

form as

O ∈
1

N

N∑

i=1

ξL∗

i [1 (o
(L−1)
i )

T
] + β [0 WL∗

1 ].

By taking the transpose on the right-hand-side we obtain

1

N

N∑

i=1

[
1

o
(L−1)
i

]
(ξL∗

i )T +

[
0T

β (WL∗

1 )T

]
=

1

N

N∑

i=1

[
(ξL∗

i )T

o
(L−1)
i (ξL∗

i )T + β (WL∗

1 )T

]
.

Finally, by using the definitions in (3.5) for ξL∗

i in the first row shows the results.

The interpretation of Corollary 3.1 is significant: The special choice of MLP-architecture

with linear final layer together with the proposed choice of quadratic regularization without

final bias of WL allows one to generate MLP-mappings which obey the robustness properties

of the norms for the fitting. Namely, according to Corollary 3.1, for all β ≥ 0 :

1. Every local minimizer of L2
2,β({Wl}) generates function with average error over the

learning data equal to zero.

2. Local minimizers of L1
1,β({Wl}) yield zero median error for the MLP-function.

3. Minimization of L1
2,β({Wl}) enforces spatial median error of the MLP-transformation to

zero.

To this end, we notice that these results are actually valid for all kind of regression approxima-

tors with separate bias.

12



4 Numerical experiments

4.1 Univariate single-valued regression

In the first test setting, we study the use of the MLP-network in the reconstruction of a given

single-valued function of one variable, which is disturbed by random noise. We train the net-

work by solving the optimization problem (2.16) both with α = q = 2 and α = q = 1, and

we compare the results given by these two approaches. We remark that in this case nL = 1,

and thus, the functionals L1
2,β and L1

1,β are identical. The minimizations are performed by the

proximity control bundle method, which is applicable both to the smooth functional L2
2,β and to

the nonsmooth functional L1
1,β [Mäkelä and Neittaanmäki, 1992].

Definition of the test problem

We consider the reconstruction of the function f(x) = sin(x) in the interval x ∈ [0, 2π]. The

input-vectors of the training data are chosen to be N uniformly spaced values xi from the

interval [0, 2π] given by xi = (i − 1) 2π/(N − 1). The samples of function values involve two

types of random noise: Low-amplitude normally distributed noise affects the values over the

whole interval [0, 2π], while at some isolated points, the values are disturbed by high-amplitude

uniformly distributed noise (outliers). Hence, we choose

yi = sin(xi) + δ εi + ζ ηi, (4.1)

where εi ∼ N (0, 1) and

ηi =

{
U(−1, 1), i ∈ O,

0, i /∈ O.
(4.2)

Here, U(−1, 1) denotes the uniform distribution on (−1, 1) and O is an index set of outliers

such that O ⊂ {1, 2, . . . , N}.

We use the MLP with one hidden layer (i.e., L = 2) considered in Section 3.1. The activa-

tion is performed with the k-tanh functions (2.19) such that F(·) = Diag{ti(·)}
n1

i=1. The input

and output dimensions are both equal to one (n0 = n2 = 1), and we use the values 5, 10, and

20 for the dimension n1 of the hidden layer. The size N of the training data is 30, 60, or 120,

and correspondingly the index set O is chosen to contain 3, 5, or 10 randomly selected indices

between 1 and N. The amplitudes of the normally and uniformly distributed noise are δ = 0.3

and ζ = 2, respectively. The training dataset {xi,yi} in the case N = 30, created according

to the definitions above (before scaling to the range of the activation functions), is illustrated in

Figure 4.

Comparison of formulations

Our goal is to estimate the approximation capability of the MLP-networks corresponding to

the minimization of the two functionals L1
1,β and L2

2,β with different values of the param-

13
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Figure 4: The training dataset {xi,yi} in the case N = 30 and the exact graph of function f.
The circled markers involve also uniformly distributed noise.

eters N, n1, and β. For this purpose, we define a validation set of input-values by x̂i =

(i − 1) 2π/(Nt − 1), Nt = 257, which do not coincide with the input-values xi of the training

data. The difference between the MLP-approximation and the exact function f is then calcu-

lated by using the norm

err (W1,W2) =
1

Nt

Nt∑

i=1

∣∣∣W2 F̂(W1 x̂i) − f(x̂i)
∣∣∣ . (4.3)

Let us emphasize that the choice of error measure is not based on favoring L1
1,β but on the fact

that this form weights equally both small and large deviations from the exact function.

We performed a series of tests with the three different values for N and n1. For fixed N

and n1, the value of the regularization parameter β varied in the interval [0, 1], and for each

β, we repeated the optimization algorithm 100 times with randomly created initial values for

the weight matrices {W1,W2} and computed the minimum and average values of the errors

(4.3). We remind that it is well-known and tested that the optimization problems to be solved

for training the MLP are nonconvex, and thus, there is a large number of local minima (all

satisfying Corollary 3.1) in the error surface to be explored by random initialization.

We computed also the value of the regularization term

r({Wl}) =
β

2

L∑

l=1

∑

(i,j)∈Il

|Wl
i,j|

2 (4.4)
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L1
1,β L2

2,β

N n1 β∗ err∗ β∗ err∗

30 5 2.0e-2 1.2e-1 7.7e-3 1.6e-1
10 4.1e-2 1.2e-1 2.0e-2 1.6e-1
20 1.0e-1 1.3e-1 4.1e-2 1.6e-1

60 5 2.0e-5 5.9e-2 6.4e-4 9.2e-2
10 2.0e-2 6.9e-2 2.6e-3 9.4e-2
20 4.1e-2 6.6e-2 6.4e-3 1.0e-1

120 5 1.9e-3 4.3e-2 1.2e-4 5.7e-2
10 1.3e-2 4.7e-2 6.4e-4 5.9e-2
20 3.1e-2 4.8e-2 2.6e-3 6.2e-2

Table 1: Optimal values β∗ of the regularization parameter for different values of N and n1 with
the functionals L1

1,β and L2
2,β. Column err∗ gives the minimum error obtained with the value β∗

over 100 tests.

of the functional Lα
q,β corresponding to the MLP with minimum error in (4.3) for finding an

effective way to choose the parameter β. This computation was motivated by the fact that

our previous studies in image restoration with similar functions to be optimized have shown

a strong correlation between the reconstruction error and the value of the regularization term

[Kärkkäinen and Majava, 2000]. In addition to the well-known cross-validation techniques,

simpler heuristics for this purpose have been proposed and tested with the backpropagation-

algorithm, e.g., in [Rögnvaldsson, 1998].

The results are collected in Figures 9–20. Each figure includes three graphs corresponding

to the three dimensions n1 of the hidden layer. For certain functional and fixed value of N,

the graphs represent either the average value of the errors in the 100 tests or the value of the

regularization term. In each case, the norm (4.3) obtains minimum value at certain β, and these

optimal points and minimal values of ’err’ are listed in Table 1. The optimal points are marked

also in the graphs by vertical dashed segments.

We see that in each test case the MLP-network based on the minimization of the functional

L1
1,β∗ leads to a better approximation of the exact function f than the MLP based on L2

2,β. We

can also make the natural conclusion that the error is reduced by increasing N. The figures

show that with larger dimension of the hidden layer the overall values of the error become

smaller, but the minimum value remains essentially the same. Moreover, with larger value of n1,

the error of the MLP-approximation becomes less sensitive to the choice of the regularization

parameter. However, there is a remarkable difference in the behaviour of the two learning

problem formulations for n1 = 20 (i.e., with high representation capability of MLP): When

β grows from β∗, the average error for L1
1,β essentially stays on the same level whereas for

L2
2,β there is approximately a linear increase. In addition, for L2

2,β small deviations from the

optimal regularization parameter β∗ may lead to a large increase in the error. Interestingly this

suggests that the well-known approach in statistics “to integrate over the nuisance parameters”
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like β would here yield a poorer results (especially for L2
2,β) than choosing an appropriate single

value.

From the graphs of the regularization term we conclude that the strong oscillation of r({Wl})

indicates that the value of β is smaller than the optimal value β∗. In other words, the MLP is

too complex with unnecessary variance. However, otherwise the reconstruction error and the

regularization term are not clearly correlated, and thereby the value of r({Wl}) does not con-

tain enough information in choosing the parameter β exactly. For q = α = 1 and n1 = 20 there

seems to be some similarity in the graphs for different values of N to indicate β∗, although this

visual information is difficult to quantify precisely.

4.2 Bivariate vector-valued regression

In the second set of experiments, we consider the reconstruction of a vector-valued function

from noisy data. We use again the MLP-network with one hidden layer and k-tanh activation

and train the network by minimizing the functional Lα
q,β with the three choices q = α = 2,

q = α = 1, and q = 2α = 2. Since the output-dimension nL of the network is larger than one,

the function L1
2,β differs from L1

1,β unlike in the case nL = 1.

The test function is formed as a sum of a global term, which affects the function values

over the whole domain, and a local term, which is nonzero only in a small part of the domain.

It is well-known that MLP is efficient in approximating the global behaviour of a function,

but due to its structure it tends to ignore the local variations. Another commonly used neural

architecture is the radial basis function network (RBFN) [Broomhead and Lowe, 1988], which

builds approximations with local basis functions. Therefore, when properly focused, RBFN can

catch the local term but gives poor approximations to the global term.

A simple idea to combine the advantages of these two types of networks is to augment

the input of the MLP by the squares of the input-values. Flake refers to such MLP-networks as

SQUARE-MLP (square unit augmented, radially extended, multilayer perceptron) [Flake, 1998]

(see also [Sarajedini and Hecht-Nielsen, 1992]) . Such networks retain the ability to form global

representations, but they can also form local approximations with a single hidden node.

Definition of the test problem

We define the vector-valued function f :
� 2 →

� 2 , f(x, y) = (f1(x, y), f2(x, y)) as

f1(x, y) = 4 exp

(
−

(x − x0)
2 + (y − y0)

2

0.7

)
−

2

1 + exp(−6x)
+ 1, (4.5)

and f2(x, y) = f1(y,−x) with x0 = y0 = 2.5. The function (4.5) is an example of a “Hill-

Plateau” surface [Sarle, 1997], which is a sum of a local Gaussian and a global tanh-function.

The approximation of such a function is known to be difficult for both MLP and RBFN.
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Figure 5: The components of the output-vectors in the training data (f1 left, f2 right).

We attempt to reconstruct the function f in Π = [−5, 5] × [−5, 5]. The input-vectors of the

training data are obtained by first constructing a uniform grid in Π with the grid points given by

(xi, yj) = ((i − 1) h − 5, (j − 1) h − 5), i, j = 1, . . . , ng, (4.6)

where h = 10/ng. For the tests, we choose ng = 21 as in [Flake, 1998]. These coordinate values

are then prescaled to the range [−1, 1] of the activation functions, and they are included in the

input-vector together with the squares of the scaled coordinates. Thus, the input-dimension of

the MLP-network becomes n0 = 4.

As in the previous section, all output-vectors involve low-amplitude normally distributed

noise, while some isolated outputs are also disturbed by high-amplitude outliers. More pre-

cisely, the output corresponding to the input xi,j = (xi, yj, x
2
i , y

2
j )

T is of the form yi,j =

(yi,j
1 ,yi,j

2 )T with

y
i,j
k = fk(xi, yj) + δ εi,j + ζ ηi,j, (4.7)

where εi,j ∼ N (0, 1) and

ηi,j =

{
U(−1, 1), (i, j) ∈ O,

0, (i, j) /∈ O.
(4.8)

In the tests, the index set O is chosen to include approximately 0.05 n2
g randomly selected ele-

ments, δ = 0.1, and ζ = 2. The training data created according to the definitions above (before

prescaling to the range of the activation function) is illustrated in Figure 5.

Comparison of formulations

We performed tests by using the values 5, 10, and 20 for n1 with the three different train-

ing formulations (2.16), initially without regularization (i.e., β = 0). The error of the MLP-

approximations was measured using a uniform 49×49 validation grid over Π. Let us denote the

input-vectors of the validation data by x̂i,j and the corresponding grid points by (x̂i, ŷi). Then,
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Figure 6: The components of the best reconstruction, which was obtained by minimizing L1
2,β

with n1 = 5 (f1 left, f2 right).

the error is calculated by

err (W1,W2) =
1

492

49∑

i=1

49∑

j=1

∥∥∥W2 F̂(W1 x̂i,j) − f(x̂i, ŷi)
∥∥∥

2
. (4.9)

With fixed n1, we again repeated the optimization algorithm 100 times with random initializa-

tion and computed the minimum and average values of the errors (4.9).

The results are collected in Table 2. We conclude that the functionals L1
1,0 and L1

2,0 are more

accurate and clearly more robust with respect to the initial guess than the smooth functional

L2
2,0. In all cases, the smallest minimum error is achieved with the choice q = 2α = 2, while

the dimension n1 does not have a strong effect on the accuracy. The best reconstruction, given

by the functional L1
2,0, is illustrated in Figure 6.

Determination of the regularization parameter

In the previous section, the regularization parameter β was equal to zero. However, as already

pointed out by the results in Section 4.1, the value of β has a strong effect on the accuracy of

results, and thereby, it is important to be able to choose the value correctly. Next, we describe

another strategy for choosing the value of β and estimate the quality of the resultant MLP

network.

The dimension of the hidden layer is fixed to n1 = 20 and we use the choice q = 2α = 2.

L2
2,β L1

1,β L1
2,β

n1 err∗ err err∗ err err∗ err
5 9.6e-2 2.8e-1 3.7e-2 1.7e-1 3.4e-2 1.6e-1

10 1.2e-1 2.4e-1 4.0e-2 1.5e-1 3.6e-2 1.4e-1
20 1.1e-1 2.3e-1 4.7e-2 1.4e-1 4.4e-2 1.4e-1

Table 2: Minimum and average errors with the functionals L2
2,β, L1

1,β, and L1
2,β.
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Figure 7: Graphs of the three errors errk as functions of β.

The learning data is exactly the same as in the previous tests, and it is first divided into two

disjoint parts C1 and C2 of equal sizes. More precisely, for N = 441 the randomly chosen sets

C1 and C2 contain N1 = 221 and N2 = 220 elements, respectively. Only the input-output pairs

(xi,j,yi,j) in the set C1 are used in the functional (2.17), while the set C2 is reserved for testing.

This choice originates from the relaxed requirements concerning the necessary amount of data

for robust training. We define the two errors

errk (W1,W2) =
1

Nk

∑

(xi,j ,yi,j )∈Ck

∥∥∥W2 F̂(W1 x̂i,j) − yi,j
∥∥∥

2
, k = 1, 2, (4.10)

while err3 refers to the already defined validation error in (4.9).

We search for an optimal nonzero β in the interval [10−9, 10−6], which can be determined

by monitoring the value of the regularization term as described within the univariate test. The

interval is covered with a predefined set of values l · 10−s, l = 1, 2, 4, 6, 8; s = 9, 8, 7, and, for

each fixed β, the optimization algorithm is repeated 50 times with random initialization. We

compute the errors err1 and err2 in all 50 tests and choose the MLP network with the smallest

err2 to be the best one. For this MLP, we compute also the error err3.

The results of the first stage of our strategy are illustrated by the graphs in Figure 7. We see

that all three curves have similar behavior, which suggests that the errors err1 and err2, which

can be computed without knowing the exact function f , contain the same information as the true

error err3. Based on err1 and err2 we now limit the complexity of MLP by choosing β = 10−8.

After choosing the value of the regularization parameter we proceed to the second stage of
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Figure 8: The minimal value of L1
2,β and err3 in the final 100 tests.

our strategy, which is the determination of the final MLP network. Because the model com-

plexity of MLP is now fixed along with β, we are able to use the whole data in the learning

problem. We perform the minimization 100 times and choose the final MLP to be the one

which corresponds to the smallest value of local minima for L1
2,β (i.e., the best candidate for

global minimum).

We evaluated the quality of the obtained MLP by computing the corresponding err3, which

was approximately 0.05. By comparing this value to the graph of Figure 7 we see that approx-

imation is improved from the first stage and we obtain a very good overall error level. We also

computed err3 in each 100 tests and compared these values to the local minima of L1
2,β. To

study the correlation of these values and thus the validity of the final choice, we then sorted the

100 tests in ascending order according to L1
2,β. The results of this procedure together with the

corresponding values of err3 are given in Figure 8. The increse of err3 from its smallest value

stresses the importance of the last choice, which recovered almost the best alternative among

the 100 candidates.

5 Conclusions

We considered robust learning problem formulations for the MLP network with regularization-

based pruning. The MLP-transformation was presented in a layer-wise form, which yielded a

compact representation of the optimality systems and allowed a straightforward analysis and

computer implementation of the proposed techniques.
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Different learning problem formulations were tested numerically for studying the effect of

noise with outliers. We also proposed and tested two novel strategies for blind determination of

the regularization parameter and thus the generality of MLP. Altogether, combination of robust

training, square unit augmentation of input and effective control of model complexity yielded

very promising computational results with simulated data.
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Appendix: Error and regularization figures
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Figure 9: Average error with the functional L1
1,β and N = 30.
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Figure 10: Regularization term with the functional L1
1,β and N = 30.
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Figure 11: Average error with the functional L2
2,β and N = 30.
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Figure 12: Regularization term with the functional L2
2,β and N = 30.
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Figure 13: Average error with the functional L1
1,β and N = 60.
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Figure 14: Regularization term with the functional L1
1,β and N = 60.
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Figure 15: Average error with the functional L2
2,β and N = 60.
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Figure 16: Regularization term with the functional L2
2,β and N = 60.
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Figure 17: Average error with the functional L1
1,β and N = 120.
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Figure 18: Regularization term with the functional L1
1,β and N = 120.
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Figure 19: Average error with the functional L2
2,β and N = 120.
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Figure 20: Average error with the functional L2
2,β and N = 120.
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